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Discrete time model for chemical or biological decay in chaotic flows:
Reentrance phase transitions
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We consider a discrete time model of advection, reaction, and diffusion on a lattice to investigate the
steady-state spatial structure of chemically decaying substances. The time discretization of the dynamics has a
considerable impact on these structures. Additional smooth-filamental phase transitions, nonexistent in the
continuous-time description, appear. We show how these structures and their scaling properties depend on the
time step of the discrete dynamics. Exploiting the analogies of this discrete model with the logistic map, some
general features are discussed.
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I. INTRODUCTION description in these cases is in terms of difference equations
and iterative maps.

Reactive flows play an important role in nature and tech- |n this paper, we discuss the advection-diffusion-reaction
nology, and they are ubiquitous in the atmosphere and thgroplem in a time-discrete framework. The first work which
oceans. Stratospheric ozone chemistry is one of the MOgfefines discrete time evolution for reaction-advection sys-
studied examples where complex interaction between trangg s js Ref[9], virtually starting this research area. Similar

p?;thprf?cessesha{“?', 9h?rr]11|cal lreacuo_ns Iea:(dtshto tthetforn;]atl oblems, and the question itself of whether a given discrete
orthe ‘ozone hole" In the polar regions ot the SraloSpherg, ., .oss can pe modeled in a continuous way in reactive dy-

[1,2]. Biological population dynamics in a fluid environment namics, were discussed in Refd1,17. In the second ar-

can also be described within the framework of reactive flowstiCIe the authors modeled the reaction by a standard man and
Phytoplankton is the primary producer of the aquatic ecosys- ' y P

tem’s food chain and plays a crucial role as a key ingredienEhe population dynamics by a Iogls_nc map.
in the carbon exchange process between the oceans and at-"N e pPresent work, the emphasis will be on the effects of
mosphere and thus in regulating the greenhouse effect. THENE discretization on reactive patterns with respect to the
complex interaction of nutrients and plankton species in th&@Nes appearing in the time continuous description. It was
upper layer of the ocean is influenced by the stirring due thown in Refs[13,14 (regarding linearly decaying chemical
mesoscale edd|¢g’4] The Stirring process typ|Ca”y leads to substances in a time continuous Conleh&t in chaotic flows
the formation of complex filamental structurs, which in ~ the steady-state spatial distribution of the products for certain
observationgfor example through remote sensing of satelliteparameter is smooth while for others it might become fila-
imaging are clearly dominating the picture. These structuresnental (nondifferentiabl¢. We will show that in discrete
enhance chemical and biological activity in flopg-9]. time processes, new smooth-filamental transitions appear in
The general description of these reactive scalar figlds ~ the dynamics. The phenomenon is new, nonexistent in the
concentrations of reacting chemicals or interacting biologicatontinuous-time description, and it can contribute to a better
populations in a fluig involves nonlinear differential equa- understanding of the appearance of the filamental structures
tions. The dynamics is governed by the so-called advectionin such systems.
diffusion-reaction equations. However, some of the photo- The paper is structured as follows. In Sec. II, we intro-

chemical reactions in the atmosphere proceed only in thgyce the advection-reaction-diffusion problem investigated
presence of light and stop by nigf@], which makes the in the paper. In the next section, we present the flow model
process discrete. Also, in some biological situations populagng the reaction, both of them in the sense of the lattice-

tion growth or death processes can be modeled in discrefgiying algorithm based on the discretization of the phase
time intervals(for instance, in Ref10)). In the case of phy- space. Section IV contains numerical evidence of smooth

s apa oo e Sxpone 1o S Iamerta dsoutons appearg 1 h scady i, an
light, or the periodic warming of the water, can discretize thegrli analytical descrlptpn_o_f the smooth-f|lamgqtal transition
processes in which the species are participating. In general,g ce .?ISO .th? Appen;a)lt)ﬁlwll:llgléhe exact cotndlmog for\}h?h

discrete approach is reasonable whenever the occurrence ggnsttion in terms ot the Holder exponent. In Sec. v, the
the reaction is determined by a periodic phenomefeg., time continuous limit is d_lscussed. In Sec. VI, we give a
the daily cycle of the lightwhich has a characteristic time 9€neralization of the findings to more general systems of
scale of the same order of magnitude as the species’ lifetim@i©logical relevance. Finally, in section VII the results are

(otherwise we can neglect its time dependence and use &ymmarized along with mentioning possible further research

average value in equationsThe appropriate mathematical topics.
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Il. THE MODEL conditions can be described by tlatice mixing algorithm
Earlier findings of Refs[13,14, regarding the time con- proposed by Pierrehumbdtt7]. The main idea is to replace

. .2 : X e the advection in the velocity fielduy,u,), by an area-
tinuous description of advection-reaction-diffusion systems . o . . Y

constitute a valuable basis for comparison with the discretg reserving map's discrete iterations defined by
dynamics. For the sake of convenience, as a workbench sys- Uy

tem we use the same particular case of flow and reaction as X1 =Xn Ax” Ax,

in the mentioned works. The novel features, however, are the

nonlinearity of the reactiofas justified beloywand the gen-

eralization of the model to more realistic situations. We con- V1= Yo+ [HIT} Ay, 2
sider the simple case of a single substance advected by a Ay

time-dependent two-dimensional closed flow. The reactivghich maps the fluid particles from their initial positions
evolution of a fluid element is taken in the form of an orderrn:(xn,yn) assumed to be on a discrete, Cartesisix N

v chemical decay. In order to obtain a nontrivial concentraypice of linear size unity, to their advected positiog

tion field at long times, we include a space-dependent sourc_e( : :
’ . ) ; = (Xn+1,Yne1) at some time lag later. The integer valugx]
S(r) of the substance. The concentration field in the time_ << ires that the points are translated under the map with

continuous description is governed by the partial differentialmultiple integers of the lattice spacingsx=1/N and Ay
equation =1/N, respectively.
aC For numerical investigations, we take a simple standard
e [u(r,t)- VIC=S(r)-b C"+DV-C, (1) model of a time-periodic flo}19] that consists of the alter-
nation of two steady sinusoidal shear flows,
whereb is the decay rate andg(r ,t) is the known flow field. _
This linear(y=1) or nonlinear(y+ 1) decay can be regarded Ux = AgCOS 27y,

as a simplified qualitative model for the decay of atmo-

spheric pollutants. Similar processes are relevant in ozone Uy =0, 3
photochemistry for the destruction of stratospheric 0zone€n the x direction and

mediated by halogen compounf]. It can also describe

decomposition of unstable radicals and relaxation of the sea uc=0,

surface temperature to mean val{ig5] (y=1). For plankton

dynamics, the exponent in the second term is usually taken Uy = AgCOS27Xy) , (4)

eitheryzl or 2. The fo_rmgr case represents the expo.nentiqh the y direction for the first and the second half of the
abiotical death or the sinking of the phytoplankton, while the 4 respectively. The parametés controls the chaotic
latter is of biotical character due to the competition betwee ehavi,or of the flow. We choose the valdg=2.4 which

individuals. The source term describes a localized and quarb'roduces a flow with a single connected chaotic region with-

tified input of the species in the mixing region, such as, forg, ¢ \isible KAM tori. The period of the flovT is taken to be

example, due to localized warming or upwellings of nutrient—ﬁ"I

i . . the time unit. On alN X N Cartesian lattice, maf®) is de-
rich water from deeper ocean Iayers: In the vege_tat]o.n PEMOfhed on the unit square with periodic boundary conditions,
(early summey, both the reproduction of the individuals

(e.g., diatomg16]) and their death due to competitidry Xnt1 = X + [Agc0g27Y,)N7]/N,
=2 decay have a maximal intensity during ddthe diatoms
are in the upper layer of the ocean exposed to solar)layind Vi1 = Yo (5)

a minimum point during nightthe plankton is sinked Since
besides the above-mentioned chemical processes this pro@r—‘d
lem of biological origin constitutes the other principal moti-
vation for the present work, in the following by “reaction”
we will mean not only chemical, but also biological activity. -
Although real atmospheric or oceanic processes involve a Y1 = Y+ [AgCOS2m)NTI/N, ®
large number of species and reactions, the simple moddbr the first and second half of the period, respectively.
above captures the main characteristic features of these reac- Each advection step is followed by the application—
tive systems, namely nonlinearity and a relaxatigisédble  inside each fluid element—of a map on the concentration
nonuniform equilibrium state. field, according to

Cria(rn) = Cy(rp) + 78(ry)) — C,(rp)”. (7)
Il. DISCRETE TIME MODEL FOR ADVECTION- - . .
REACTION-DIFEUSION PROBLEMS The indicesn in iterations(5)—(7) denote the number of the

reaction iteration steps. For the simplicity of the analytical
In order to take into account the discrete character of th@nd numerical calculations, we use the same time stegih
processes, we model the reactive flow in numerical experifor the advection and the reaction map. This is not a limita-
ments by a discrete map both for mixing and reaction. Theion, because, as we will see below, the ratio between the
advection dynamics in a closed flow with periodic boundarycharacteristic times of the flow and the reactigiven by the

Xn+1 = Xn,
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Lyapunov exponenjsdetermines the spatial distribution of 8Chaq(rp) = {1 = yB[C (r )] }5C,(r,), (13)

the product, and not the ratio between the time steps. During

each period of the flow, we appM.=1/7times the reaction Which can be interpreted as a linear decay equation with a
step. Thus fon(modM ) € [0,M./2) we are in the first half ~space-dependent effective decay riate yB[C'(r,)]""%, ap-
period of the flow and we apply the for(B) of the iteration; ~ proximated by the spatial averagd(C")”"*. The reaction

for n(modM,) € [M./2,M,) we are in the second half period Lyapunov exponent is then

of the flow, and we apply iteratio(6), accordingly. Taking

7— 0 in Eq.(7), we recover the reactive part of Ed) in the Ar=In[1-9B(C)" | (14)
time continuous descriptiotsee Sec. IY. The reaction and
the transport dynamical subsystem is coupled by the space- =In|1 - yB(A)*], (15)

dependent source term chosen to B@,) =as(r,)=all

+0.1 sin2wx,)sin(27y,) ], with parameten representing the since the average &fr) is unity. As we will see below, this

strength of the source. expression gives a good approximation of the numerical
One appealing property of the lattice mixing algorithm is findings. We study the case wheYy is negative, i.e., the

that it opens the possibility to simulate also the effects of thgparameter rangéfor linear decay 8<B<1, for quadratic

diffusion [17]. In the following calculations, however, we decay 0<B< 1/C") where the reaction’s fixed point is stable

neglect the diffusive transpofi8]. and the concentrations converge to the equilibrium value
In Eq. (7), instead of the two parametessandb, it is  given by this fixed point.

useful to introduce two new nondimensional paramefers

andB, IV. SMOOTH-FILAMENTAL TRANSITIONS

A=alb, B=b, (8) After a short transient time, a steady state sets in the sys-
which describe completely the reaction dynamics in the formfem, in which the spatial distribution of the concentration
field can be smooth or filamental. The "roughness” of the
Craa(rn) = Clr) + A B srp) =B Gy(rp)”. (9 concentration field results from the competition between the
Note, however, that the full advection-reaction problem has &issipative stable reaction dynamitthat tends to relax to
third relevant parameter, too, namely the flow's Lyapunovthe_smooth eqpll|br|um dIStI‘I'butIOI‘]. and thus reducgs concen-
exponentA over time 7. The map(9) has a locally homo-  tration fluctuatlon}s'and the dlsp_ersmn.due to chaotic mixing
geneous fixed point at each spatial positiof (r,) (which, _by stret_chlng and folding fluid elements, enhances
=[A s(r,)]¥. The stability of these equilibrium states can be the spatial gradients of the concentratipfil, 13,14. When

characterized by the local reaction Lyapunov exponent e two effects become balanced, a smooth-filamental transi-

Ag(r,), defined by the decay of the linearized transformationt!On takes place in the system. o
For a quantitative characterization of the reactive field

around the fixed point, . . .
P . . C,:1(r,), we use the Holder exponeat given by the scaling
Cora(ry) =C'(ry) =€*R"[Cy(r))-C'(r)]. (100  of the concentration differences between two spatially close

We define the reaction Lyapunov exponent associated to th(rglt distancedry) points,

whole reaction dynamical subsystemeds=(e*r), where _ ofr )
OC(or )| = |Cryq(rn+ ) — Croqg(rp)| ~ |6F n,

() is the spatial average. 10| = [Caea(Fn+ &) = Crea(Fl] ~ [Tl

In the time continuous case, the Lyapunov exponents are
Ag=2.7 for the adveqtlon andly b_for f[he reaction sub For simplicity, we assume a uniform Hélder exponett)
system. The advection and reactive time scales are then . . . . :

. . =« in each spatial pointmono-affine approaghA filamen-
given by the inverse of the Lyapunov exponent of the flow . .
: ) tal structure presents anomalous scaliag<l, while a
and of the reaction ratl, respectively. . ~ . R
Lo ; ; . ) ..smooth function hagx=1. For the linear case, the Holder

The situation is different in the discretized case: the flow’s .
Lvapunov exponent is simpl exponent can be exactly calculatege the Appendix for the

yap P Py detailed algebraas

AF: T)\F. (11)
a=mi {

-In(1-B)
n v ,1} (17)

(16)

The reaction’s characteristic time, however, has a more com-

plex dependence on the reaction rate. Writing the linear re-

action iteration step in the fornC,,(r,)=(1-B)Cy(r,)

+A B dr,), we can see that the reaction Lyapunov exponent _JIAR

in the sense of definitiofL0) is {_1} (18)
Ar=In|1-B|. (12 showing that the smooth-filamental transition=1) takes

For a nonlinear decay, it is not possible to analytically cal-place when the Lyapunov exponents of the reaction and ad-

culate the exponent, but we can find an approximate expresection dynamics are equal in absolute value. In the case of

sion by linearizing the reaction iteration sté) around the the second-order decay, using E#8), we can write an ap-

fixed point of the reaction, proximant for the Holder exponent as
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B ’ FIG. 3. Snapshot on thx,y) plane of the concentration pattern

o ) ) ] of the linearly decaying substance under the chaotic flow, for time
FIG. 1. Variation of the Holder exponent with the dlmenS|onIessstep 7=1/2 and7=1/8 (a=0.%, b=0.9, A\p=2.7). Darker levels

reaction rateB, in the case of a linearly decaying substance&or ngicate smaller concentrations.
=0.5, Ag=1.35. The squares represent the numerically measured
values, while the continuous line is the theoretically predicted resulness decreases to the point where the phase transition be-
Eq. (17). The critical value of the decay rate for which the smooth-tween the filamental and smooth distributions takes place
filamental transition takes place from Ed.7) is B.=1-exg—Af) (B.=0.74. At larger values of the decay rate, due to the
=0.74. dominant effect of the reaction, the final distribution be-
comes smooth. The Holder exponent depends logarithmi-
_ {_ In|1 - ZB\W } cally on the _strengt!B of the .reaction, instead of linearly, as
a=min) ————, 1. (199  was shown in the time continuous approatB,14.
Ar Since the discretization of the processes due to the differ-
In general, the Holder exponent can be approximated as €nt lifetime of the species has special importance, we varied
1-1ly the t_ime stepr by keep?ng all the other_ par_ameteéas b_, and
o= min{ -In1-yB A 1} (20) \¢) fixed. The change is more drastic in this césee Fig. 2
A ' For instance, by applying twice the linear reaction step dur-
ing one period of the flowM ,=2;7=0.5) at b=0.9, the re-

We can see that for the linear decay, the roughness of thg ting steady-state distribution is smooth. By increasing the

concentration distributions depends only on one of the diy, mber of reaction stefdd . during one periodreducingr)

mensionless parameters, @& For higher-order reactions, fiamental structure appears in the steady stitgs. 3 and
the expression of the Holder exponent also contains the pay This means that in exactly similar circumstances, the dif-

rameterA. _ _ ferent lifetime of the species can result in different spatial
In order to investigate numerically the effects of the com-istributions of the population, or in other words the differ-

petition between advection and reaction, we keep constarice in the species’ lifetime can induce smooth-filamental
the parameters of the flow and vary that of the source a”Bhase transition.

reactionA andB. _ _ (i) In the case of quadratic decay, for the same param-
(i) In the case of linear decay, first we numerically mea-gtars as for the linear decayr=1.35, 7=1/2, A=0.5, we

sured the Holder exponents of the different concentrationq 4 different scenario. The major change in the dynamics

distributions (Fig._ 1), for constant parameterdg=1.35,7 g the appearance of a reentrance transitféigs. 5-8, non-

=1/2, andchangingB. We also kept the parameté=0.5  qyistent in the time continuous description. Surprisingly, the

constant because the roughness does not depend on it in thiS mental structure disappears and later reappears.

case. ) For a better visualization, we show in Fig. 5 snapshots on
The distributions corresponding to small decay rates showhg chemical pattern for increasing reaction rates, displaying

filamental structures. Increasing the decay rate, the roughjearly the different spatial structures. Interestingly, above

the second transition point the roughness of the field in-
= creases as the decay rdieds increased further. To demon-
b=0.9 _ strate the general character of the phenomenon we show the
g o variation of the Holder exponent together with the two tran-
" sition points for the cases whex=0.5=const(a is propor-
tional tob) in Fig. 7 and when bot#A andB are changed but
A=2/B (a=consj in Fig. 8. The filamental structure always

o
[ 2 B o S " I

\ \ \ \ 0.56 0.508

- . . v 0.5 v 0.5
FIG. 2. Variation of the Hdlder exponent as a function of the AJ J\f\/\
0.5 1

time lag (r=1/2,1/4,1/6..,1/16 of the map in the case of a

linear decay(a=0.%, A\g=2.7). The squares represent the numeri-  0.44 0 0. 492O 5 '5 .

cally measured values, while the continuous line is the theoretically Ty Ty

predicted result Eq.17). The deviations from the theoretical result

for small 7 are due to the effects of the numerical diffusigoro- FIG. 4. Transversal cuts on the patterns shown in Fig. 3 along
portional to 1£). the x=0.25 line for time steps=1/2 (left) and r=1/8 (right).
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FIG. 5. Snapshots on the,y) plane of the concentration pat- ' ' B
tern of the quadratically decaying substance under the chaotic flow, o - .
for decay rateB=0.04, B=0.3, B=0.8 from left to right. Darker FIG. 7. Variation of the Holder exponent as a function of the

reaction rateB for quadratic decay and\=0.5, Ap=1.35. The
squares represent the numerically measured values, while the con-
tinuous line is the theoretically predicted curve E).

levels indicate smaller concentratio@®=2/B, Ag=1.35.

reappears.
The condition for the phase transitiot@=1) in the map

yields from Eq.(19) the critical values = M - B _ b (22)
_A AF )\F’T )\F,
1lxe™'F
Bex = VS (21)  where\g=Ag/7 [see Eq.(11)]. For |Ag>Ag, the Holder

exponent remaingr=1, unchanged, representing a smooth
Since the Holder exponeatdepends implicitlyby B) on  concentration distribution.

the time lagr of the map, the lifetime of the species has a For quadratic decay, Eq19) gives the Holder exponent
considerable impact on the dynamics also in the case of gconsidering theAg| < Ar case for small) [21],

quadratic reaction. Instead of the simple phase transition I —
found in the case of linear decay, relatiGt®) shows that w=— In[1 - 2BVA| - 2\’ab.
now, for increasing values of the time step, a reentrance tran- A Ne
sition is present in the dynamics.

(23

The critical values of the continuous-time reaction raigs
=B/ for 7<1 from Eq.(21) are

2
Our results derived for maps go into those of Refs. bﬁ:M_
[13,14] determined for the time continuous approach of the 47°a
linear decay problem. The continuous-time limit can be per\e opserve thab,. possesses a finite Iimibc_=>\§/4a,
formed by takingg— 0 and7— 0 in the difference equation spowing where the phase transition takes place in the
over the time Iagz_-, with the co_ndltlonsB/r—_> b. The Holder  -ontinuous-time description, whilb,, diverges as 1# in
exponent(18) derived for the linear decay in the méphen  he 7,0 |imit, indicating that the second phase transition

|A%|.<AF’ .e., «<1) goes in the time continuous limit  gisappearsis shifted tob,, == in the time continuous limjt
—01In

V. THE TIME CONTINUOUS LIMIT
(24)

! VI. GENERALIZATION
L0 96 The second phase transition and the reappearance of the
filamental phase are characteristic not only of our studied
case, but of a wider class of reactions. Note thater2,
092 without a source term, recurren€® approaches in the limit
1 B=1 the logistic mapC,,;=rC,(1-C,) with r=1 (dotted
o 05l line in Fig. 9. The logistic map is a well known, classical
v example for the description of population dynamics in cases
0.92¢ when the growth of the population is stopped by some lim-
0.88
s O | ' ]
0.93 o sl /m . .\ |
0.86 3 . om LI |
© 0.79¢ 50.6 -/ .\i\
0.4F . .
0.72 : / "
0 0. y5 1 0.2p -\i\'i\ 1
) 0 | L L | [
FIG. 6. Transversal cuts on the patterns shown in Fig. 5 along 0 0.2 0.4 B 06 0.8 !
thex=0.25 line for decay rateB=0.04,B=0.3,B=0.8(from top to h
bottom). FIG. 8. The same as Fig. 7 but f&=2/B.
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B=0.1
FIG. 9. Behavior of recurrence
1 1 2.5 (7) for reactions with different pa-
rameteB with (a) and without(b)

_ 0.8¢ . 2 source term. For increasing (B
S o6l | &1 B,,,=0.25 =0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
P we approach the dotted linéa)
0.4} 1 1 representing the logistic map that
we can obtain in the limiB=1.
o.2r 0.3 B=0.9 B=0.4 The straight line is the diagonal
0 F——u . 0 : : : ' Cni1=Cp.
0 05 1 1.5 2 25 3 3.5 4 0 1 2 3 4 5
(a) G (b) G
iting factors(competition for sources, food, or light dfs(Cp)
We will show that the appearance of the second transition “ac. =0, (28)
point is caused by the fact that the recurrefitedescribing N 1B=BgpCo=C

the reaction is a nonmonotonous function fgr-1. In the  \hich in the cases shown in Fig. 7 and 8 B~ V2/2 and
following calculation, instead of the functiofg(C,)=C,(1 Bs,p=0.25, respectively. Since for the valu&,, corre-

-B G, we use a generdlz(C,) function with a smooth  sponding to the superstable fixed paigg=—=, cf. Eq.(18),
maximum and a slope less than 1 in the origin. Without athe Holder exponent has a “virtual singularify?0]. Increas-
source term, the equation describing the reaction has onling the reaction rate above this value, the stability of the
one fixed point in the origin, according to the fact that areaction decreases to smaller and smaller values, until it bal-
decaying reaction without a source leads to a vanishinginces the stability of the advection when a phase transition
population. We assure a nontrivial concentration distributiortakes place in the system. For larger values of the reaction
in the steady state by introducing a source term in the equaate, the effects of the advection will dominate the effects of
tion. For the sake of simplicity, we consider, without loss ofthe reaction and a filamental structure will reappear in the
generality, the caséAB9 =1 (for other(ABs values, only a  system.

simple shift along they axes is neededThus More visually[see Fig. )] for any B<Bq,, the diago-
nal intersects the function in points with positive gradient.
Chi1=1+15(C,). (25) For B>Bg,, the slope in the fixed point sweeps over the

same values but with negative sign. Thus for ed®h

The fixed point of the map is given by its intersection <Bq, value of the parameter we can find a cert&@h
with the diagonalFig. 9) C"=1+fg(C"). The map linearized > Bgyp counterpart for which in the fixed point the functions
around the fixed point is have equal slopes in absolute value. The corresponding
Lyapunov exponents are equal, and the roughness of the field
is the same, accordingly. Thus the filamental phase reappears
for increasing values of the parameter. Even though the re-
action is becoming stronger, the stability of the reaction is
what determines the spatial structure of the concentration
field.

In general, this implies that for every smooth function

- &fB(Cn)
n+1 ¢9Cn

5C,. (26)

The reaction Lyapunov exponefk appearing in expression
(18), according to definitior{10) and to Eq.(26), is

fg(C,) with one maximum point, a second phase transition
afg(Cp) . . "
Ar=In| —* , (27) appears in the system independently from any additional as-
dCy c,=C’ sumption on the character of the reaction.

which contains the slope of the functidg(C,) in the fixed
point. Therefore, the roughness of the concentration distribu-
tion is determined by the absolute value of this gradient. We have investigated the interplay between mixing and
From Eq.(27) it is clear that the character of the concentra-reaction, by focusing on the effects introduced by a discrete
tion distribution does not depend on tbieengthof the reac- map description, in comparison with the time continuous ap-
tion, as it was intuitively expected, but rather on gtability =~ proach of the problem. For first-order reactions, we found
of the reaction. only a quantitative change in comparison with the continu-
For a certain value of the dimensionless reaction Bate ous case: the dependence of the roughness on the reaction
Bsup the diagonal intersects the map in its maximum pointrate is logarithmic and not linear, but the fact that a stronger
For By, the fixed point of the reaction is superstable, i.e.,reaction smooths out the structure remains unchanged.
the reaction Lyapunov exponent is infinite. TBig,,value is For second-order reactions, however, a second transition
given by the condition point appears. For increasing decay rates, the filaments dis-

VII. DISCUSSION AND CONCLUSION
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appear at the beginning, but upon increasing further the re- Applying the reaction iteration from the initi&, values
action strength, they reappear. Surprisingly, the faster rea¢e C;, we obtain after the first reaction step;(ro)=(1
tion is not able to smooth out the structure of the-B)Cy(ry)+ABSr,), which in the same time period is ad-
concentration field, as expected. In conclusion, it is not thesected by flow to the next position: C,(ro)=C,(r,). After
strength but rather the stability of the reaction that deterthe nth reaction step, the concentration will be

mines the roughness of the chemical pattern. This stability

depends on the time step of the map. Thus only the different n

time step of the magdifferent lifetime of the specigscan Craa(rp) = (1 =B)™Cy(ro) + > ABgr)(1-B)"k,
modify drastically the dynamicgchanges on the scaling k=0

properties, Holder exponents, power spectrutm the point (A1)

when it produces a phase transition in the system.

Based on the generalization presented in the precedinghis expression contain®) the remnant of the initial con-
section, we suggest that the reappearance of the filamenteéntration in the starting points of the trajectory, which de-
structure is a generic property of systems in which the reaceays as time goes on, ar) the sum of the source contri-
tion map is smooth, nonmonotonous, and with a maximunbutions accumulated in the points visited by these
point in the studied domain. An extension to the logistictrajectories in the last—k steps. The first term on the right-
map, as shown before, is straightforward, pointing out theéhand side containing the initial values of the concentration
relevance of the findings to biological populations dynamicsfield tends to zero in the limih— . Evaluating the differ-

The qualitative difference between the cases of linear andnce 6C,,.,(dr,,) with expression(Al), after neglecting the
nonlinear reactions is an argument against the statement thiatst term on the right-hand side, we obtain
a linear decay can be considered as an approximation to
more complex chemical or biological evolutions with stable n
chemical dynamics. Within the framework of a discrete time SCphiq(ory) = E 88(ry, or AB(L - B)"k, (A2)
dynamics, this statement is no longer valid. k=0

As an extension of the present work to more realistic situ- ] ) )
ations of biological origin, we would suggest similar inves- Where &ry with (0<<k<n) is the time-dependerimore ex-
tigations of a model with a periodically changing reactionactly step-dependentlistance between the two trajectories
rate in Eq.(1), describing a situation in which for half of a @nd &s is the difference of the source term at poinfsand
period the reaction goes on and for half of a period it isfk+ '« The time dependence of the distan¢as( in Eq.
stopped. This model, which will be the subject of further (A2) can be estimated by considering the time-reversed ad-
investigations, represents a transition between the mereljection steps starting fromr, at t,, as|éry=|or e,

continuous description and the pure discrete representationerek<n for almost all orientationsi,=dr,/|dr |, except
of the dynamics. the ones parallel to the local unstable direction.

By taking the limit ér,— 0 and expandingss(r,, ry) to
linear order indry, we obtain
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NpV Coaa(rp) = 2 V s(rgn ABe -8 (a4
k=0
APPENDIX: THE HOLDER EXPONENT . . . . .
which is convergent if the exponents are negative. Taking
For the evaluation of the Holder exponent, we need thento account the form of the reaction Lyapunov exponent, we
difference 8C11(r,)=Cpya(rn+8r,)—Cpia(r,) at time t,  can see that fol\p<|A| the sum remains finite and the
=n7 of the value of the chemical field at two different points corresponding concentration fieldvhen n— =) is smooth
separated by a small distande,. This difference can be (differentiablg. For Ag>|A(|, the derivatives ofC,,; di-
obtained by following two trajectories ending at preselectedrerge, resulting in an almost nowhere differentiable field,
pointsr .+ &r , andr, after thenth advection step, and taking thus the field has a filamental character.
into account their history, i.e., the temporal evolution of the The Holder exponent results from the scaling properties
chemical field along these trajectories from a previétis  of 6C,,1(dr,,). In the case ofAc<|A¢|, in ther,—0 limit
reaction iteration step. we find in Eq.(A3) the simple scaling
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OCpig(Orp) ~ |&n| (A5) SCpyq(Orp) ~ |5rn|e[A|:+|n(1—B)]n_ (AB)

Insertingn=Az1n(|&ro|/|&r ) in Eq. (A6), we find that the
concentration field scales as

Thus the Hoélder exponent, cf. EGL6), is a=1. WhenAg _ “AG/AR
<|A¢|, the behavior of the divergent sum is governed by the OCrea(F ) ~ || : (A7)
term corresponding tk=0, thus we obtain This corresponds to the Holder exponert|Ag|/ Ar.
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