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We consider a discrete time model of advection, reaction, and diffusion on a lattice to investigate the
steady-state spatial structure of chemically decaying substances. The time discretization of the dynamics has a
considerable impact on these structures. Additional smooth-filamental phase transitions, nonexistent in the
continuous-time description, appear. We show how these structures and their scaling properties depend on the
time step of the discrete dynamics. Exploiting the analogies of this discrete model with the logistic map, some
general features are discussed.
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I. INTRODUCTION

Reactive flows play an important role in nature and tech-
nology, and they are ubiquitous in the atmosphere and the
oceans. Stratospheric ozone chemistry is one of the most
studied examples where complex interaction between trans-
port processes and chemical reactions leads to the formation
of the ”ozone hole” in the polar regions of the stratosphere
f1,2g. Biological population dynamics in a fluid environment
can also be described within the framework of reactive flows.
Phytoplankton is the primary producer of the aquatic ecosys-
tem’s food chain and plays a crucial role as a key ingredient
in the carbon exchange process between the oceans and at-
mosphere and thus in regulating the greenhouse effect. The
complex interaction of nutrients and plankton species in the
upper layer of the ocean is influenced by the stirring due to
mesoscale eddiesf3,4g. The stirring process typically leads to
the formation of complex filamental structuresf5g, which in
observationssfor example through remote sensing of satellite
imagingd are clearly dominating the picture. These structures
enhance chemical and biological activity in flowsf6–9g.

The general description of these reactive scalar fieldssi.e.,
concentrations of reacting chemicals or interacting biological
populations in a fluidd involves nonlinear differential equa-
tions. The dynamics is governed by the so-called advection-
diffusion-reaction equations. However, some of the photo-
chemical reactions in the atmosphere proceed only in the
presence of light and stop by nightf2g, which makes the
process discrete. Also, in some biological situations popula-
tion growth or death processes can be modeled in discrete
time intervalssfor instance, in Ref.f10gd. In the case of phy-
toplankton, factors such as the time that these
photosynthesis-capable organisms spend exposed to solar
light, or the periodic warming of the water, can discretize the
processes in which the species are participating. In general, a
discrete approach is reasonable whenever the occurrence of
the reaction is determined by a periodic phenomenonse.g.,
the daily cycle of the lightd which has a characteristic time
scale of the same order of magnitude as the species’ lifetime
sotherwise we can neglect its time dependence and use an
average value in equationsd. The appropriate mathematical

description in these cases is in terms of difference equations
and iterative maps.

In this paper, we discuss the advection-diffusion-reaction
problem in a time-discrete framework. The first work which
defines discrete time evolution for reaction-advection sys-
tems is Ref.f9g, virtually starting this research area. Similar
problems, and the question itself of whether a given discrete
process can be modeled in a continuous way in reactive dy-
namics, were discussed in Refs.f11,12g. In the second ar-
ticle, the authors modeled the reaction by a standard map and
the population dynamics by a logistic map.

In the present work, the emphasis will be on the effects of
time discretization on reactive patterns with respect to the
ones appearing in the time continuous description. It was
shown in Refs.f13,14g sregarding linearly decaying chemical
substances in a time continuous contextd that in chaotic flows
the steady-state spatial distribution of the products for certain
parameter is smooth while for others it might become fila-
mental snondifferentiabled. We will show that in discrete
time processes, new smooth-filamental transitions appear in
the dynamics. The phenomenon is new, nonexistent in the
continuous-time description, and it can contribute to a better
understanding of the appearance of the filamental structures
in such systems.

The paper is structured as follows. In Sec. II, we intro-
duce the advection-reaction-diffusion problem investigated
in the paper. In the next section, we present the flow model
and the reaction, both of them in the sense of the lattice-
mixing algorithm based on the discretization of the phase
space. Section IV contains numerical evidence of smooth
and filamental distributions appearing in the steady state, and
an analytical description of the smooth-filamental transition
ssee also the Appendixd giving the exact condition for the
transition in terms of the Hölder exponent. In Sec. V, the
time continuous limit is discussed. In Sec. VI, we give a
generalization of the findings to more general systems of
biological relevance. Finally, in section VII the results are
summarized along with mentioning possible further research
topics.
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II. THE MODEL

Earlier findings of Refs.f13,14g, regarding the time con-
tinuous description of advection-reaction-diffusion systems,
constitute a valuable basis for comparison with the discrete
dynamics. For the sake of convenience, as a workbench sys-
tem we use the same particular case of flow and reaction as
in the mentioned works. The novel features, however, are the
nonlinearity of the reactionsas justified belowd and the gen-
eralization of the model to more realistic situations. We con-
sider the simple case of a single substance advected by a
time-dependent two-dimensional closed flow. The reactive
evolution of a fluid element is taken in the form of an order
g chemical decay. In order to obtain a nontrivial concentra-
tion field at long times, we include a space-dependent source
Ssr d of the substance. The concentration field in the time
continuous description is governed by the partial differential
equation

]C

]t
+ fusr ,td · = gC = Ssr d − b Cg + D=2C, s1d

whereb is the decay rate andusr ,td is the known flow field.
This linearsg=1d or nonlinearsgÞ1d decay can be regarded
as a simplified qualitative model for the decay of atmo-
spheric pollutants. Similar processes are relevant in ozone
photochemistry for the destruction of stratospheric ozone
mediated by halogen compoundsf2g. It can also describe
decomposition of unstable radicals and relaxation of the sea
surface temperature to mean valuesf15g sg=1d. For plankton
dynamics, the exponent in the second term is usually taken
eitherg=1 or 2. The former case represents the exponential
abiotical death or the sinking of the phytoplankton, while the
latter is of biotical character due to the competition between
individuals. The source term describes a localized and quan-
tified input of the species in the mixing region, such as, for
example, due to localized warming or upwellings of nutrient-
rich water from deeper ocean layers. In the vegetation period
searly summerd, both the reproduction of the individuals
se.g., diatomsf16gd and their death due to competitionsg
=2 decayd have a maximal intensity during daysthe diatoms
are in the upper layer of the ocean exposed to solar lightd and
a minimum point during nightsthe plankton is sinkedd. Since
besides the above-mentioned chemical processes this prob-
lem of biological origin constitutes the other principal moti-
vation for the present work, in the following by “reaction”
we will mean not only chemical, but also biological activity.

Although real atmospheric or oceanic processes involve a
large number of species and reactions, the simple model
above captures the main characteristic features of these reac-
tive systems, namely nonlinearity and a relaxationalsstabled
nonuniform equilibrium state.

III. DISCRETE TIME MODEL FOR ADVECTION-
REACTION-DIFFUSION PROBLEMS

In order to take into account the discrete character of the
processes, we model the reactive flow in numerical experi-
ments by a discrete map both for mixing and reaction. The
advection dynamics in a closed flow with periodic boundary

conditions can be described by thelattice mixing algorithm
proposed by Pierrehumbertf17g. The main idea is to replace
the advection in the velocity fieldsux,uyd, by an area-
preserving map’s discrete iterations defined by

xn+1 = xn + F ux

Dx
tGDx,

yn+1 = yn + F uy

Dy
tGDy, s2d

which maps the fluid particles from their initial positions
r n=sxn,ynd assumed to be on a discrete, Cartesian,N3N
lattice of linear size unity, to their advected positionr n+1
=sxn+1,yn+1d at some time lagt later. The integer valuefpg
assures that the points are translated under the map with
multiple integers of the lattice spacingsDx=1/N and Dy
=1/N, respectively.

For numerical investigations, we take a simple standard
model of a time-periodic flowf19g that consists of the alter-
nation of two steady sinusoidal shear flows,

ux = A0coss2pynd,

uy = 0, s3d

in the x direction and

ux = 0,

uy = A0coss2pxnd, s4d

in the y direction for the first and the second half of the
period, respectively. The parameterA0 controls the chaotic
behavior of the flow. We choose the valueA0=2.4 which
produces a flow with a single connected chaotic region with-
out visible KAM tori. The period of the flowT is taken to be
the time unit. On anN3N Cartesian lattice, maps2d is de-
fined on the unit square with periodic boundary conditions,

xn+1 = xn + fA0coss2pyndNtg/N,

yn+1 = yn, s5d

and

xn+1 = xn,

yn+1 = yn + fA0coss2pxndNtg/N, s6d

for the first and second half of the period, respectively.
Each advection step is followed by the application—

inside each fluid element—of a map on the concentration
field, according to

Cn+1sr nd = Cnsr nd + tSsr nd − tbCnsr ndg. s7d

The indicesn in iterationss5d–s7d denote the number of the
reaction iteration steps. For the simplicity of the analytical
and numerical calculations, we use the same time stept both
for the advection and the reaction map. This is not a limita-
tion, because, as we will see below, the ratio between the
characteristic times of the flow and the reactionsgiven by the
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Lyapunov exponentsd determines the spatial distribution of
the product, and not the ratio between the time steps. During
each period of the flow, we applyMt=1/t times the reaction
step. Thus fornsmodMtdP f0,Mt /2d we are in the first half
period of the flow and we apply the forms5d of the iteration;
for nsmodMtdP fMt /2 ,Mtd we are in the second half period
of the flow, and we apply iterations6d, accordingly. Taking
t→0 in Eq.s7d, we recover the reactive part of Eq.s1d in the
time continuous descriptionssee Sec. IVd. The reaction and
the transport dynamical subsystem is coupled by the space-
dependent source term chosen to beSsr nd=assr nd=af1
+0.1 sins2pxndsins2pyndg, with parametera representing the
strength of the source.

One appealing property of the lattice mixing algorithm is
that it opens the possibility to simulate also the effects of the
diffusion f17g. In the following calculations, however, we
neglect the diffusive transportf18g.

In Eq. s7d, instead of the two parametersa and b, it is
useful to introduce two new nondimensional parametersA
andB,

A = a/b, B = tb, s8d

which describe completely the reaction dynamics in the form

Cn+1sr nd = Cnsr nd + A B ssr nd − B Cnsr ndg. s9d

Note, however, that the full advection-reaction problem has a
third relevant parameter, too, namely the flow’s Lyapunov
exponentLF over timet. The maps9d has a locally homo-
geneous fixed point at each spatial position:C*sr nd
=fA ssr ndg1/g. The stability of these equilibrium states can be
characterized by the local reaction Lyapunov exponents
LRsr nd, defined by the decay of the linearized transformation
around the fixed point,

Cn+1sr nd − C*sr nd = eLRsr ndfCnsr nd − C*sr ndg. s10d

We define the reaction Lyapunov exponent associated to the
whole reaction dynamical subsystem aseLR=keLRsr ndl, where
kpl is the spatial average.

In the time continuous case, the Lyapunov exponents are
lF=2.7 for the advection andlR=−b for the reaction sub-
system. The advection and reactive time scales are then
given by the inverse of the Lyapunov exponent of the flow
and of the reaction rateb, respectively.

The situation is different in the discretized case: the flow’s
Lyapunov exponent is simply

LF = tlF. s11d

The reaction’s characteristic time, however, has a more com-
plex dependence on the reaction rate. Writing the linear re-
action iteration step in the formCn+1sr nd=s1−BdCnsr nd
+A B ssr nd, we can see that the reaction Lyapunov exponent
in the sense of definitions10d is

LR = lnu1 − Bu. s12d

For a nonlinear decay, it is not possible to analytically cal-
culate the exponent, but we can find an approximate expres-
sion by linearizing the reaction iteration steps9d around the
fixed point of the reaction,

dCn+1sr nd . h1 − gBfC*sr ndgg−1jdCnsr nd, s13d

which can be interpreted as a linear decay equation with a
space-dependent effective decay rateb8=gBfC*sr ndgg−1, ap-
proximated by the spatial averagegBsC*dg−1. The reaction
Lyapunov exponent is then

LR . lnu1 − gBsC*dg−1u s14d

=lnu1 − gBsAd1−1/gu, s15d

since the average ofssr d is unity. As we will see below, this
expression gives a good approximation of the numerical
findings. We study the case whenLR is negative, i.e., the
parameter rangesfor linear decay 0,B,1, for quadratic
decay 0,B,1/C*d where the reaction’s fixed point is stable
and the concentrations converge to the equilibrium value
given by this fixed point.

IV. SMOOTH-FILAMENTAL TRANSITIONS

After a short transient time, a steady state sets in the sys-
tem, in which the spatial distribution of the concentration
field can be smooth or filamental. The ”roughness” of the
concentration field results from the competition between the
dissipative stable reaction dynamicssthat tends to relax to
the smooth equilibrium distribution and thus reduces concen-
tration fluctuationsd and the dispersion due to chaotic mixing
swhich, by stretching and folding fluid elements, enhances
the spatial gradients of the concentrationsd f11,13,14g. When
the two effects become balanced, a smooth-filamental transi-
tion takes place in the system.

For a quantitative characterization of the reactive field
Cn+1sr nd, we use the Hölder exponenta, given by the scaling
of the concentration differences between two spatially close
sat distancedr nd points,

udCsdr ndu ; uCn+1sr n + dr nd − Cn+1sr ndu , udr nuasr nd.

s16d

For simplicity, we assume a uniform Hölder exponentasr d
=a in each spatial pointsmono-affine approachd. A filamen-
tal structure presents anomalous scalinga,1, while a
smooth function hasa=1. For the linear case, the Hölder
exponent can be exactly calculatedssee the Appendix for the
detailed algebrad as

a = minH− lns1 − Bd
LF

,1J s17d

=minH uLRu
LF

,1J , s18d

showing that the smooth-filamental transitionsa=1d takes
place when the Lyapunov exponents of the reaction and ad-
vection dynamics are equal in absolute value. In the case of
the second-order decay, using Eq.s18d, we can write an ap-
proximant for the Hölder exponent as
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a = minH− lnu1 − 2BÎAu
LF

,1J . s19d

In general, the Hölder exponent can be approximated as

a = minH− lnu1 − g B A1−1/gu
LF

,1J . s20d

We can see that for the linear decay, the roughness of the
concentration distributions depends only on one of the di-
mensionless parameters, onB. For higher-order reactions,
the expression of the Hölder exponent also contains the pa-
rameterA.

In order to investigate numerically the effects of the com-
petition between advection and reaction, we keep constant
the parameters of the flow and vary that of the source and
reactionA andB.

sid In the case of linear decay, first we numerically mea-
sured the Hölder exponents of the different concentration
distributions sFig. 1d, for constant parametersLF=1.35, t
=1/2, andchangingB. We also kept the parameterA=0.5
constant because the roughness does not depend on it in this
case.

The distributions corresponding to small decay rates show
filamental structures. Increasing the decay rate, the rough-

ness decreases to the point where the phase transition be-
tween the filamental and smooth distributions takes place
sBc=0.74d. At larger values of the decay rate, due to the
dominant effect of the reaction, the final distribution be-
comes smooth. The Hölder exponent depends logarithmi-
cally on the strengthB of the reaction, instead of linearly, as
was shown in the time continuous approachf13,14g.

Since the discretization of the processes due to the differ-
ent lifetime of the species has special importance, we varied
the time stept by keeping all the other parameterssa,b, and
lFd fixed. The change is more drastic in this casessee Fig. 2d.
For instance, by applying twice the linear reaction step dur-
ing one period of the flowsMt=2;t=0.5d at b=0.9, the re-
sulting steady-state distribution is smooth. By increasing the
number of reaction stepsMt during one periodsreducingtd,
filamental structure appears in the steady statesFigs. 3 and
4d. This means that in exactly similar circumstances, the dif-
ferent lifetime of the species can result in different spatial
distributions of the population, or in other words the differ-
ence in the species’ lifetime can induce smooth-filamental
phase transition.

sii d In the case of quadratic decay, for the same param-
eters as for the linear decayLF=1.35, t=1/2, A=0.5, we
find a different scenario. The major change in the dynamics
is the appearance of a reentrance transitionsFigs. 5–8d, non-
existent in the time continuous description. Surprisingly, the
filamental structure disappears and later reappears.

For a better visualization, we show in Fig. 5 snapshots on
the chemical pattern for increasing reaction rates, displaying
clearly the different spatial structures. Interestingly, above
the second transition point the roughness of the field in-
creases as the decay rateB is increased further. To demon-
strate the general character of the phenomenon we show the
variation of the Hölder exponent together with the two tran-
sition points for the cases whenA=0.5=constsa is propor-
tional tobd in Fig. 7 and when bothA andB are changed but
A=2/B sa=constd in Fig. 8. The filamental structure always

FIG. 2. Variation of the Hölder exponent as a function of the
time lag st=1/2,1/4,1/6… ,1 /16d of the map in the case of a
linear decaysa=0.5b, lF=2.7d. The squares represent the numeri-
cally measured values, while the continuous line is the theoretically
predicted result Eq.s17d. The deviations from the theoretical result
for small t are due to the effects of the numerical diffusionspro-
portional to 1/td.

FIG. 3. Snapshot on thesx,yd plane of the concentration pattern
of the linearly decaying substance under the chaotic flow, for time
step t=1/2 andt=1/8 sa=0.5b, b=0.9, lF=2.7d. Darker levels
indicate smaller concentrations.

FIG. 1. Variation of the Hölder exponent with the dimensionless
reaction rateB, in the case of a linearly decaying substance forA
=0.5, LF=1.35. The squares represent the numerically measured
values, while the continuous line is the theoretically predicted result
Eq. s17d. The critical value of the decay rate for which the smooth-
filamental transition takes place from Eq.s17d is Bc=1−exps−LFd
=0.74.

FIG. 4. Transversal cuts on the patterns shown in Fig. 3 along
the x=0.25 line for time stepst=1/2 sleftd andt=1/8 srightd.
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reappears.
The condition for the phase transitionssa=1d in the map

yields from Eq.s19d the critical values

Bc± =
1 ± e−LF

2ÎA
. s21d

Since the Hölder exponenta depends implicitlysby Bd on
the time lagt of the map, the lifetime of the species has a
considerable impact on the dynamics also in the case of a
quadratic reaction. Instead of the simple phase transition
found in the case of linear decay, relations19d shows that
now, for increasing values of the time step, a reentrance tran-
sition is present in the dynamics.

V. THE TIME CONTINUOUS LIMIT

Our results derived for maps go into those of Refs.
f13,14g determined for the time continuous approach of the
linear decay problem. The continuous-time limit can be per-
formed by takingB→0 andt→0 in the difference equation
over the time lagt, with the conditionsB/t→b. The Hölder
exponents18d derived for the linear decay in the mapswhen
uLRu,LF, i.e., a,1d goes in the time continuous limitt
→0 in

a =
− lnu1 − Bu

LF
.

B

lFt
→ b

lF
, s22d

where lF=LF /t fsee Eq.s11dg. For uLRu.LF, the Hölder
exponent remainsa=1, unchanged, representing a smooth
concentration distribution.

For quadratic decay, Eq.s19d gives the Hölder exponent
sconsidering theuLRu,LF case for smalltd f21g,

a =
− lnu1 − 2BÎAu

LF
→ 2Îab

lF
. s23d

The critical values of the continuous-time reaction ratesbc
;B/t for t!1 from Eq.s21d are

bc± =
1 ± fs1 − lFtdg2

4t2a
. s24d

We observe thatbc− possesses a finite limitbc−=lF
2 /4a,

showing where the phase transition takes place in the
continuous-time description, whilebc+ diverges as 1/t2 in
the t→0 limit, indicating that the second phase transition
disappearssis shifted tobc+=` in the time continuous limitd.

VI. GENERALIZATION

The second phase transition and the reappearance of the
filamental phase are characteristic not only of our studied
case, but of a wider class of reactions. Note that forg=2,
without a source term, recurrences7d approaches in the limit
B=1 the logistic mapCn+1=rCns1−Cnd with r =1 sdotted
line in Fig. 9d. The logistic map is a well known, classical
example for the description of population dynamics in cases
when the growth of the population is stopped by some lim-

FIG. 6. Transversal cuts on the patterns shown in Fig. 5 along
thex=0.25 line for decay ratesB=0.04,B=0.3,B=0.8 sfrom top to
bottomd.

FIG. 7. Variation of the Hölder exponent as a function of the
reaction rateB for quadratic decay andA=0.5, LF=1.35. The
squares represent the numerically measured values, while the con-
tinuous line is the theoretically predicted curve Eq.s19d.

FIG. 8. The same as Fig. 7 but forA=2/B.

FIG. 5. Snapshots on thesx,yd plane of the concentration pat-
tern of the quadratically decaying substance under the chaotic flow,
for decay rateB=0.04, B=0.3, B=0.8 from left to right. Darker
levels indicate smaller concentrationssA=2/B, LF=1.35d.
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iting factorsscompetition for sources, food, or lightd.
We will show that the appearance of the second transition

point is caused by the fact that the recurrences7d describing
the reaction is a nonmonotonous function forg.1. In the
following calculation, instead of the functionfBsCnd=Cns1
−B Cnd, we use a generalfBsCnd function with a smooth
maximum and a slope less than 1 in the origin. Without a
source term, the equation describing the reaction has only
one fixed point in the origin, according to the fact that a
decaying reaction without a source leads to a vanishing
population. We assure a nontrivial concentration distribution
in the steady state by introducing a source term in the equa-
tion. For the sake of simplicity, we consider, without loss of
generality, the casekABsl=1 sfor otherkABsl values, only a
simple shift along they axes is neededd. Thus

Cn+1 = 1 + fBsCnd. s25d

The fixed point of the map is given by its intersection
with the diagonalsFig. 9d C* =1+fBsC*d. The map linearized
around the fixed point is

dCn+1 = U ] fBsCnd
]Cn

U
Cn=C*

dCn. s26d

The reaction Lyapunov exponentLR appearing in expression
s18d, according to definitions10d and to Eq.s26d, is

LR = lnZU ] fBsCnd
]Cn

U
Cn=C*

Z , s27d

which contains the slope of the functionfBsCnd in the fixed
point. Therefore, the roughness of the concentration distribu-
tion is determined by the absolute value of this gradient.
From Eq.s27d it is clear that the character of the concentra-
tion distribution does not depend on thestrengthof the reac-
tion, as it was intuitively expected, but rather on thestability
of the reaction.

For a certain value of the dimensionless reaction rateB,
Bsup, the diagonal intersects the map in its maximum point.
For Bsup, the fixed point of the reaction is superstable, i.e.,
the reaction Lyapunov exponent is infinite. ThisBsup value is
given by the condition

U ] fBsCnd
]Cn

U
B=Bsup,Cn=C*

= 0, s28d

which in the cases shown in Fig. 7 and 8 areBsup=Î2/2 and
Bsup=0.25, respectively. Since for the valuesBsup corre-
sponding to the superstable fixed pointLR=−`, cf. Eq.s18d,
the Hölder exponent has a “virtual singularity”f20g. Increas-
ing the reaction rate above this value, the stability of the
reaction decreases to smaller and smaller values, until it bal-
ances the stability of the advection when a phase transition
takes place in the system. For larger values of the reaction
rate, the effects of the advection will dominate the effects of
the reaction and a filamental structure will reappear in the
system.

More visually fsee Fig. 9sbdg for any B,Bsup, the diago-
nal intersects the function in points with positive gradient.
For B.Bsup, the slope in the fixed point sweeps over the
same values but with negative sign. Thus for eachB8
,Bsup value of the parameter we can find a certainB9
.Bsup counterpart for which in the fixed point the functions
have equal slopes in absolute value. The corresponding
Lyapunov exponents are equal, and the roughness of the field
is the same, accordingly. Thus the filamental phase reappears
for increasing values of the parameter. Even though the re-
action is becoming stronger, the stability of the reaction is
what determines the spatial structure of the concentration
field.

In general, this implies that for every smooth function
fBsCnd with one maximum point, a second phase transition
appears in the system independently from any additional as-
sumption on the character of the reaction.

VII. DISCUSSION AND CONCLUSION

We have investigated the interplay between mixing and
reaction, by focusing on the effects introduced by a discrete
map description, in comparison with the time continuous ap-
proach of the problem. For first-order reactions, we found
only a quantitative change in comparison with the continu-
ous case: the dependence of the roughness on the reaction
rate is logarithmic and not linear, but the fact that a stronger
reaction smooths out the structure remains unchanged.

For second-order reactions, however, a second transition
point appears. For increasing decay rates, the filaments dis-

FIG. 9. Behavior of recurrence
s7d for reactions with different pa-
rameterB with sad and withoutsbd
source term. For increasingB sB
=0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9d
we approach the dotted linesad
representing the logistic map that
we can obtain in the limitB=1.
The straight line is the diagonal
Cn+1=Cn.
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appear at the beginning, but upon increasing further the re-
action strength, they reappear. Surprisingly, the faster reac-
tion is not able to smooth out the structure of the
concentration field, as expected. In conclusion, it is not the
strength but rather the stability of the reaction that deter-
mines the roughness of the chemical pattern. This stability
depends on the time step of the map. Thus only the different
time step of the mapsdifferent lifetime of the speciesd can
modify drastically the dynamicsschanges on the scaling
properties, Hölder exponents, power spectrumd, to the point
when it produces a phase transition in the system.

Based on the generalization presented in the preceding
section, we suggest that the reappearance of the filamental
structure is a generic property of systems in which the reac-
tion map is smooth, nonmonotonous, and with a maximum
point in the studied domain. An extension to the logistic
map, as shown before, is straightforward, pointing out the
relevance of the findings to biological populations dynamics.

The qualitative difference between the cases of linear and
nonlinear reactions is an argument against the statement that
a linear decay can be considered as an approximation to
more complex chemical or biological evolutions with stable
chemical dynamics. Within the framework of a discrete time
dynamics, this statement is no longer valid.

As an extension of the present work to more realistic situ-
ations of biological origin, we would suggest similar inves-
tigations of a model with a periodically changing reaction
rate in Eq.s1d, describing a situation in which for half of a
period the reaction goes on and for half of a period it is
stopped. This model, which will be the subject of further
investigations, represents a transition between the merely
continuous description and the pure discrete representation
of the dynamics.
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APPENDIX: THE HÖLDER EXPONENT

For the evaluation of the Hölder exponent, we need the
difference dCn+1sdr nd=Cn+1sr n+dr nd−Cn+1sr nd at time tn
=nt of the value of the chemical field at two different points
separated by a small distancedr n. This difference can be
obtained by following two trajectories ending at preselected
pointsr n+dr n andr n after thenth advection step, and taking
into account their history, i.e., the temporal evolution of the
chemical field along these trajectories from a previouskth
reaction iteration step.

Applying the reaction iteration from the initialC0 values
to C1, we obtain after the first reaction stepC1sr 0d=s1
−BdC0sr 0d+ABssr 0d, which in the same time period is ad-
vected by flow to the next positionr 1: C1sr 0d=C1sr 1d. After
the nth reaction step, the concentration will be

Cn+1sr nd = s1 − Bdn+1C0sr 0d + o
k=0

n

ABssr kds1 − Bdn−k.

sA1d

This expression containssad the remnant of the initial con-
centration in the starting points of the trajectory, which de-
cays as time goes on, andsbd the sum of the source contri-
butions accumulated in the points visited by these
trajectories in the lastn−k steps. The first term on the right-
hand side containing the initial values of the concentration
field tends to zero in the limitn→`. Evaluating the differ-
encedCn+1sdr nd with expressionsA1d, after neglecting the
first term on the right-hand side, we obtain

dCn+1sdr nd = o
k=0

n

dssr k,dr kdABs1 − Bdn−k, sA2d

wheredr k with s0,k,nd is the time-dependentsmore ex-
actly step-dependentd distance between the two trajectories
and ds is the difference of the source term at pointsr k and
r k+dr k. The time dependence of the distancesudr ku in Eq.
sA2d can be estimated by considering the time-reversed ad-
vection steps starting fromdr n at tn, as udr ku= udr nueLFsn−kd,
wherek,n for almost all orientationsnn=dr n/ udr nu, except
the ones parallel to the local unstable direction.

By taking the limit dr n→0 and expandingdssr k,dr kd to
linear order indr k, we obtain

dCn+1sdr nd
udr nu

= o
k=0

n

= ssr kdnkABs1 − Bdn−keLFsn−kd. sA3d

The filamental or smooth structure of the concentration field
depends on the convergence of the sum appearing on the
right-hand side. Usings1−Bdn−k;esn−kdlns1−Bd, and rewriting
dr n=nnudr nu, the concentration gradient=C along the direc-
tion of nn can be written as a sum of exponential terms,

nn = Cn+1sr nd = o
k=0

n

= ssr kdnkABefLF+lns1−Bdgsn−kd, sA4d

which is convergent if the exponents are negative. Taking
into account the form of the reaction Lyapunov exponent, we
can see that forLF, uLCu the sum remains finite and the
corresponding concentration fieldswhen n→`d is smooth
sdifferentiabled. For LF. uLCu, the derivatives ofCn+1 di-
verge, resulting in an almost nowhere differentiable field,
thus the field has a filamental character.

The Hölder exponent results from the scaling properties
of dCn+1sdr nd. In the case ofLF, uLCu, in the r n→0 limit
we find in Eq.sA3d the simple scaling

DISCRETE TIME MODEL FOR CHEMICAL OR… PHYSICAL REVIEW E 71, 066205s2005d

066205-7



dCn+1sdr nd , udr nu. sA5d

Thus the Hölder exponent, cf. Eq.s16d, is a=1. WhenLF
, uLCu, the behavior of the divergent sum is governed by the
term corresponding tok=0, thus we obtain

dCn+1sdr nd , udr nuefLF+lns1−Bdgn. sA6d

Insertingn=LF
−1lnsudr 0u / udr nud in Eq. sA6d, we find that the

concentration field scales as

dCn+1sr n,dr nd , udr nu−LC/LF. sA7d

This corresponds to the Hölder exponenta= uLCu /LF.
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